Time Estimation for Defect Fixes
– Developer's Perspective –
	Domain:
	Software Development / Engineering

	Document version:
	1.1

	Document licensing:
	Copyleft [1]

	Document created:
	06/2011

	Last updated:
	10/2011

	Author(s):
	Jiri Jelinek, Senior Software Engineer

	Location:
	Research Park, Charlottesville, VA, USA

	Contact:
	jjelinek.us at gmail dot com

Table of Contents
1Introduction

2Scope

2Considerations

5Conclusion

6References

Introduction
Much has been written about the high level software development effort estimation approaches (e.g. planning poker, team estimation game, analogy / nearest neighbor, paired comparison, ad-hoc estimation, ..) and related high level concepts. It seems well understood that estimates for software projects should be done by experts, and that big tasks are often harder to estimate, so they typically need to be broken to smaller, easier to manage/estimate, sub-tasks. After a sufficient breakdown and various preliminary high-level evaluations (often including complexity estimates), experts (together or independently) have to come up with reasonable time estimates for implementation(s). Depending on the approach, the estimates can then be compared / discussed / averaged, multiplied by an accuracy-trend related numbers that can help to deal with typically over-optimistic[2] estimates. The goal of this document is to cover specific factors which were helpful to consider in order to achieve an above average accuracy in time estimates for defect fixes (and some enhancement request implementations) for multiple large size web based projects. Such estimates can be much harder to make than estimates for new development, especially when dealing with a large code base with many evolving components. Sharing the below details seems helpful because many considerations that seem obvious to one estimating expert are not necessarily so obvious to another.
Scope

As implied by the title, this document is primarily about time estimates related considerations for software development that requires modification and/or analyses of existing code. It is intended for rather larger-size and non-trivial projects. You cannot find two developers (or testers) with the same skill set and personal qualities. The more complex task - the more obvious it usually becomes in terms of time needed for a particular implementation by a particular developer. It is always important to consider the value of cross-training and elimination of potential future single point failures during task assignments. The “who should get the task?” considerations are outside of the scope of this paper. To simplify, the below listed considerations are from the “I am estimating for myself” perspective. Or more precisely, “I am the primary developer who will be responsible for implementation, and for coordinating efforts if more experts need to work on the defect fix.”

Considerations
· When was the defect submitted and last reproduced? Sometimes it takes a while before a particular defect gets a high-enough priority to be estimated and assigned to a developer. The relevant code base and other important factors (e.g. steps to reproduce) could change, possibly even to the point that the defect is no longer relevant.

· Who reported the defect (?), and the typical quality and granularity of his/her defect reports. Some testers understand their projects extremely well, some do not. Some can think like developers, and provide very helpful details, others do not. Some tend to take extra steps to uncover the primary issue(s)/cause(s), dig through logs, and correctly predict the scope. Others tend to notice only minor side effects of much bigger issues even when what they observed (but did not document) provided sufficient hints about a much bigger issue. Some immediately look for the same kind of issues on similar/related pages, others initially report only the single instance (or a problem subset) and later keep updating the defect - extending the scope after the initial estimates were given. Paying close attention to the quality of work of particular testers can increase chances to correctly estimate the time needed for analyzing and fixing non-trivial defects.
· How likely is it for users to encounter this defect? If highly unlikely, and if there are multiple ways how to fix it, it might be reasonable to go with (/estimate) an inexpensive hotfix instead of a perfect but time-consuming solution. The value-cost ratio should be always considered.

· Are the defect symptoms inconsistent? E.g. different kinds of error messages and failures after taking particular steps. Those kinds of defects can be tricky to figure out and it is usually a good idea to have such defects reproduced (and documented) by at least two testers before attempting to estimate it. This scenario is also mentioned in the below considerations about potential causes.

· Considering potential causes. E.g. was the relevant code recently modified (?) and if so, how big was the change (?), and what kind of change (e.g. lots of new logic vs. mostly copy-paste)? Could the defect be caused by a scenario that does not necessarily apply to production (e.g. “bad” data generated by a test code)? Anything to do with permissions (which tend to be behind a significant number of defects in many projects)? Getting multiple error messages that do not make much sense (considering what is the code trying to do at the time)? That can be caused by out-of-memory scenarios, especially when accompanied by performance issues.
· Does the defect hint about a larger scope issue? For example, missing or incorrectly implemented transactions or application security code could mean that the developer who wrote it made the same mistakes in the code which is only indirectly related to the reported defect, but the scope of the defect is then likely to be extended. Many developers do not even understand how numbers are represented in the systems and languages they use, and why for example the System.out.println("1.1 + 2.2 = " + (1.1 + 2.2)); java statement does not print “1.1 + 2.2 = 3.3” as they think it should.
· Do we have a reference code with a potential solution example?

· Complexity of the business logic involved (as a matter of course).

· Dependency depth (in terms of logic, components, user interfaces (UI) and non-UI interfaces, data, data layers, unit tests, etc.) and relevant impact analyses challenges / estimates. As for the key components involved, dependency matrixes and design documents can help, but in more complex projects, it is easy to underestimate the number of layers within the particular components the to-be-modified data is being pushed through. Not even the detailed design documents (DDDs) are being specific enough – often because the more specific they get, the more time consuming it becomes to keep them up to date. Even the most obvious dependencies (e.g. export and help updates after adding a UI field to a page) are often overlooked. Unit test updates and implied modifications of other automated tests also tend to not be considered by estimating developers.
· Does the relevant code include more advanced techniques (e.g. multithreading, recursion, complex math, generated code, self-modification code, ..)?
· Complexity of reproducing and sufficiently verifying the defect fix in the development environment. Relevant challenges can include unusual and hard-to-generate test data, timing/scheduling related issues, large number of often changing variables, network/OS/browser/account specific issues, challenges related to deploying and appropriately configuring relevant sub projects, and much more. One minute fix can (for multiple different reasons) take days to sufficiently verify, so this is obviously a very important consideration.
· Languages and frameworks involved and relevant available debugging (and code analyses) tools. A single defect can involve changes of various types of source code. The in-general complexity of debugging different types of source code varies, and estimates should certainly take that into account. Learning what languages/frameworks (and relevant debugging tools) are used on each tier (and to what extent) should be among the essentials for good estimates.

· Do I still know the relevant code as well as I used to? When working on a large scale project with many other developers, you cannot always expect that the code you knew relatively well a few months ago, but have not seen for a while, is still the same.

· Quality of the relevant source code
· Who wrote significant parts of the relevant code?

· Knowing the quality of work of the primary developer(s) who implemented the relevant code can be a great help when estimating. Some developers think things through a lot more than others. Some get to discover how to code a particular thing right too late, and assumptions then can be made about particular types of issues in their older code. Thus paying a close attention to task assignments and code reviews can help a lot.
· Developers may prefer (and be used to) different coding approaches / styles. What one may view as a "better structure and a higher degree of optimization" can be considered "unnecessarily (or even frustratingly) harder-to-read and maintain code" by another developer. Modifying code written by a similar-mindset developer can noticeably speed up the implementation.
· Are there currently multiple defects in the closely related code? If so then besides being more likely to find additional problems in the code, you should expect that more people might be working on the same files - which means dealing with locked files or merging (depending on the used version control mechanism). Either way, it will likely slow down implementation a bit, and it may add some risks. Code merging can get tricky.
· Old code with many hotfixes often contains stuff like misleading variable names, multi-purpose variables, irrelevant or only partly relevant comments, dead code, etc. which can make it confusing and hard to read.

· Need to move [parts of] the relevant code to a different location? The defect fix may “only” require adding a call to an existing function which seems quick and easy. But in some of those cases, the location of the function might not be ideal and it might be even necessary to move that function to another class / package / sub-project. And in that case, there might be hundreds of references to update. Typically simple, but it still needs to be done very carefully and it does take time. A low complexity task does not imply a fast implementation.
· Documentation

· Is the defect well documented?
· Is our own (/relevant) code well commented / documented?

· Are the used components developed by others well documented? Note: after switching to a newer version of a particular third party component after its previous version was used for a while, things can break and many online "how to" examples (relevant to the previous version(s)) may become misleading. When selecting third party components, stick with those that have a history of being very well documented.
· Open source vs. closed source components. Do we have “full control” (?) or are we out of luck if a heavily used (and hard-to-replace) component cannot do what we now need it to do? Can the defect be really fixed by our code change? All big software projects, including browsers your application might be required to support, have defects.
· Does this defect have a potential to be fixed by a harder-to-write but well reusable code (as opposed to a simpler-to-write but non-reusable code)? If so, which option am I estimating for?

· Collaboration Challenges

· Is it an "I will do it all myself" task, or a collaboration?

· Are the likely collaborators easy to work with? (Communication, time management, expertise, decision making, ..)
· Availability of the likely collaborators (public dev team calendar helps a lot)
· Availability of the people well familiar with the relevant logic / architecture / code.
· Multitasking / distractions. When estimating time for a particular defect fix, you should not include time spent on other tasks. But if there is a number of other tasks you are likely to be working on at the same time, then the actual work on the defect is likely to take longer than fixing it without distractions. So you still need to consider the other tasks you (/your team) will be busy with.
· Were the relevant components/resources/services recently unstable or unavailable for unrelated reasons?

· How well did I estimate similar tasks before?

· Do those kinds of defect fixes tend to be “kickbacks” for any reason (e.g. new causes of the same symptoms)?
· How stable the related requirements are? Are they still being clarified? Requirements changes can have a major impact on an in-progress (and already estimated) defect fixes.
"Walking on water and developing software from a specification are easy if both are frozen." Edward Berard

Conclusion
Regardless how exceptional the experts working on defect estimates and fix implementations are, it is certainly unrealistic to expect relatively high estimate accuracy for every single task when dealing with middle to large size projects. Relatively simple functionality is sometimes handled by overcomplicated and tricky-to-change legacy code. Defect reports and error messages can be seriously incomplete and incredibly misleading. In some rare cases even to the point that – paradoxically – the more experienced experts are involved in the initial estimates, the more likely they are to come up with an incorrect time estimate. And as aptly pointed by Brian Kernighan[3],

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it."

Most of us certainly do not write complex code "as cleverly as possible" and some of us spent years estimating and fixing a large number of defects in someone else's code with a significantly above-average accuracy. Chances are that keeping the relevant considerations from the above list in mind will help others to achieve the same or at least to get better.
References
[1] Copyleft (/free) - "Right to distribute copies and modified versions of a work and requiring that the same rights be preserved in modified versions of the work." http://en.wikipedia.org/wiki/Copyleft
[2] Estimation error surveys report about 30% error due to over-optimistic expert estimates: Molokken, K. Jorgensen, M.. "A review of software surveys on software

effort estimation". [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1237981]
[3] Brian Kernighan's Wikipedia page: [http://en.wikipedia.org/wiki/Brian_Kernighan]
PAGE
1

